\(\int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx\) [329]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 115 \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{18 \sqrt {2} \sqrt {c} f}-\frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)}}{18 c f}-\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{27 c^2 f} \]

[Out]

-1/3*sec(f*x+e)^3*(c-c*sin(f*x+e))^(3/2)/a^2/c^2/f+1/4*arctanh(1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))
^(1/2))/a^2/f*2^(1/2)/c^(1/2)-1/2*sec(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a^2/c/f

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.08, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2815, 2754, 2728, 212} \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} a^2 \sqrt {c} f}-\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 c^2 f}-\frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)}}{2 a^2 c f} \]

[In]

Int[1/((a + a*Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])]/(2*Sqrt[2]*a^2*Sqrt[c]*f) - (Sec[e + f*x]*S
qrt[c - c*Sin[e + f*x]])/(2*a^2*c*f) - (Sec[e + f*x]^3*(c - c*Sin[e + f*x])^(3/2))/(3*a^2*c^2*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2754

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))), x] + Dist[a*((m + p + 1)/(g^2*(p + 1))), Int
[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^4(e+f x) (c-c \sin (e+f x))^{3/2} \, dx}{a^2 c^2} \\ & = -\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 c^2 f}+\frac {\int \sec ^2(e+f x) \sqrt {c-c \sin (e+f x)} \, dx}{2 a^2 c} \\ & = -\frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)}}{2 a^2 c f}-\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 c^2 f}+\frac {\int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{4 a^2} \\ & = -\frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)}}{2 a^2 c f}-\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 c^2 f}-\frac {\text {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 a^2 f} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} a^2 \sqrt {c} f}-\frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)}}{2 a^2 c f}-\frac {\sec ^3(e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 c^2 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.45 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.92 \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\cos (e+f x) \left (-5-(3+3 i) \sqrt [4]{-1} \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3-3 \sin (e+f x)\right )}{54 f (1+\sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[1/((3 + 3*Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x]]),x]

[Out]

(Cos[e + f*x]*(-5 - (3 + 3*I)*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/
2] + Sin[(e + f*x)/2])^3 - 3*Sin[e + f*x]))/(54*f*(1 + Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x]])

Maple [A] (verified)

Time = 0.91 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.95

method result size
default \(-\frac {\left (\sin \left (f x +e \right )-1\right ) \left (3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}}-10 c^{\frac {7}{2}}-6 c^{\frac {7}{2}} \sin \left (f x +e \right )\right )}{12 a^{2} c^{\frac {7}{2}} \left (\sin \left (f x +e \right )+1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(109\)

[In]

int(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/12/a^2*(sin(f*x+e)-1)/c^(7/2)/(sin(f*x+e)+1)*(3*2^(1/2)*arctanh(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2
))*c^2*(c*(sin(f*x+e)+1))^(3/2)-10*c^(7/2)-6*c^(7/2)*sin(f*x+e))/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.77 \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {3 \, \sqrt {2} {\left (\cos \left (f x + e\right ) \sin \left (f x + e\right ) + \cos \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, \sqrt {-c \sin \left (f x + e\right ) + c} {\left (3 \, \sin \left (f x + e\right ) + 5\right )}}{24 \, {\left (a^{2} c f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} c f \cos \left (f x + e\right )\right )}} \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/24*(3*sqrt(2)*(cos(f*x + e)*sin(f*x + e) + cos(f*x + e))*sqrt(c)*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*
sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f*
x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*sqrt(-c*sin(f*x + e)
+ c)*(3*sin(f*x + e) + 5))/(a^2*c*f*cos(f*x + e)*sin(f*x + e) + a^2*c*f*cos(f*x + e))

Sympy [F]

\[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\int \frac {1}{\sqrt {- c \sin {\left (e + f x \right )} + c} \sin ^{2}{\left (e + f x \right )} + 2 \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx}{a^{2}} \]

[In]

integrate(1/(a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)**2 + 2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + sqrt(-c*sin
(e + f*x) + c)), x)/a**2

Maxima [F]

\[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)^2*sqrt(-c*sin(f*x + e) + c)), x)

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.75 \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\frac {3 \, \sqrt {2} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{a^{2} \sqrt {c} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {8 \, {\left (2 \, \sqrt {2} + \frac {3 \, \sqrt {2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {3 \, \sqrt {2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}}{a^{2} \sqrt {c} {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{24 \, f} \]

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

1/24*(3*sqrt(2)*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))/(a^2*sqrt(c)*s
gn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + 8*(2*sqrt(2) + 3*sqrt(2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*
pi + 1/2*f*x + 1/2*e) + 1) + 3*sqrt(2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e)
+ 1)^2)/(a^2*sqrt(c)*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^3*sgn(sin
(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(3+3 \sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {1}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^(1/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^(1/2)), x)